
Fast Feedforward Neural Networks
with CUDA and OpenMP+SSE

Elliott Forney

May, 2010

Brief Neural Network Review

Status

Micro-benchmarks

Macro-benchmarks

Conclusions

Future Improvements

Neural Network Review
Neural networks are trainable function
approximators

Neural networks “learn” to map inputs x to
outputs y by adjusting connection strengths
between units h and v

Two layer network is a universal function
approximator, with potentially infinite number
of hidden units

If we collect our samples into a matrix then
each training pass combines the errors from
each sample: batch training

Here, weights are updated using “Steepest”
Gradient Descent

Neural Network Review

Neural Network Review
Run time of both forward and backward pass are dominated by matrix
multiplication: O(qpn + pmn)

Weight update is asymptotically squished: O(pm + qp)

In practice, q is approximately m and n >> m and p

Complexity grows linearly as number of samples increases alone

While improving all operations will help for “smaller” problems, matrix
multiply dominates asymptotically, i.e. for arbitrarily large problem sizes

Status
It works!

Both CPU and GPU
implementations

No comparison with
optimized 3rd party
versions... makes it a bit
of a “straw man”

Tested with XOR and
noisy sinewave

On these problems,
precision doesn’t
“appear” to be an issue

Status
My Implementation consists of a number of small kernels:

✔Matrix multiply – ATLAS & CUDA

✔Matrix transpose – SSE+OMP & CUDA

✔Matrix-scalar multiply – SSE+OMP & CUDA

✔Pointwise multiply, add, subtract – SSE+OMP & CUDA

✔Multiply-Hyperbolic tangent – ATLAS + OPM & CUDA

✔Apply derivative of hyperbolic tangent – SSE+OMP & CUDA

✔Add/remove bias weights – Leave extra padding on CPU & GPU

✗Summation / reduction – not done, just run for fixed iterations

Micro-benchmarks
CUDA matrix multiply beats CUBLAS for most matrix sizes

However, zero padding makes life difficult.

For CPU, ATLAS is hard to beat so we just use that... for now

Micro-benchmarks
Two paradigms for pointwise operations in CUDA

For small matrices, treat as vector and assign one thread per component

For large matrices, use 2d grid and virtualize down columns

Micro-benchmarks

Micro-benchmarks
Two paradigms for pointwise operations on CPU as well

OpenMP hurts for small matrices and helps for mid-sized ones

Overhead of thread launch vs multi-core & cache

Micro-benchmarks

Micro-benchmarks
CPU Transpose below, tradeoff similar to addition

CUDA transpose follows follows principals from NVIDIA paper

75 GbyteS, roughly 5 GbyteS improvement by tweaking tile size

Micro-benchmarks

Micro-benchmarks

Macro-benchmarks
Use random inputs and targets

Let ni=no=nh=ns and vary 1 3 7 15 31 63 127 255 511 1023 2047 4095

CPU version gets up to 90 GflopS, GPU version 375 GflopS, 4x speedup

Macro-benchmarks
Same image as previous but zoomed in on small problems

CPU version beats GPU for problems smaller than about 40

Smaller padding, not enough thread blocks, transfer overhead

Conclusions
For large problems, CUDA can provide up to a 4x speedup

For smaller problems, CPU version still beats CUDA, even for some long
non-square matrices, i.e. many samples or hidden units with few inputs &
outputs

Working in CUDA is “relatively” straight forward but in some ways can be
more cumbersome than SSE & OMP

SSE and OpenMP are fairly easy and can provide nice speedups, especially
but not exclusively on compute bound tasks

Future Improvements
Test performance on more real-world problems!

Better weight updates, SCG, Rprop, Alopex

Fused multiply-transpose & transpose-multiply

Reduction to compute sum error measures

Parallel random number generation for weight initialization

Autotuning small/big kernel boundaries

More microbenchmarks

Clean up code and interface

Better error checking and handling

Yay, summertime!

