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Constructing Brain-Computer Interfaces
(BCIs) that achieve smooth, continuous
control remains challenging

Especially with more than two degrees
of freedom

In order to control devices like
    -mouse cursors
    -wheelchairs
    -prostheses
    -robotic assistants

 BCI's must
     -not be time-locked (asynchronous)
     -not require external stimuli (stimulus-free)
     -provide fluid state transitions

We believe that Mental-Task (MT) BCIs are well suited for this role

 For example:
     -Imagine left-hand movement moves cursor left
     -Imagine right-hand movement moves cursor right
     -Silently sing a song moves cursor up
     -Count backward from 100 moves cursor down

This may become second nature after prolonged use and adaptation by both the user
and the BCI system

Power-Spectral Densities (PSDs) and
Common Spatial Patterns (CSP) are
often used for classifying these types
of EEG signals.

However, these approaches have a
limited ability to capture some
types of patterns:
  -spatiotemporal
  -nonlinear
  -nonstationary

Susceptible to over fitting

Require extensive manual engineering and tuning

Not well suited for smooth control

PSDs along with Linear Discriminant Analysis (LDA) achieves good performance
among these methods and will serve as our baseline classifier

Current Approaches

EEG collected from 14 participants

10 with no disabilities, recorded in a
well-vetted laboratory environment

Four participants have severe motor
impairments, recorded in their home
environments

Each participant performed four tasks:
  -Silently count backward from 100 by 3
  -Imagine making a right-handed fist
  -Visualize a rotating Rubik's Cube
  -Silently sing a favorite song

Each task performed for 10s and 5 repetitions

200s of EEG data per subject

Data were split into 2s segments

Four repetitions used for training and
model selection via cross-validation

Final repetition used for testing

Multilayer (deep)
Convolutional Neural Networks
(CNNs) are state-of-the-art for
a number of machine learning
problems

We propose a CNN architecture for classifying
EEG signals in asynchronous BCIs

Convolution across time axis only encourages
time invariance

Full-connectivity across channels captures
spatial patterns

Hyperbolic tangent transfer functions allow
modeling of nonlinear patterns

Multiple layers encourages the network to learn a
hierarchy of multiscale patterns

Label aggregation at the readout layer sums the
log likelihoods produced by a linear softmax

Reduces free parameters to avoid over fitting and improve generalization

Provides flexibility in interface design and is well suited for smooth control

The network weights are optimized using backpropagation and Scaled Conjugate Gradients

Initializing the network's weights using a model
trained over a larger group of subjects improves
performance

Can be viewed as a form of transfer learning
and pretraining

In our experiments, we first train a model over
the first 10 subjects except for the current subject

The model is the further fine-tuned using the 
training data for the subject at hand

The improvements that result from transfer learning suggest there is some commonality
in the structure of EEG signals across participants that is useful for classifying mental tasks

Each layer of our CNNs can be interpreted as a
Finite Impulse Response (FIR) filter

This process is also equivalent to a time-delay
embedding followed by a matrix multiply and
transfer function

These filters are multivariate, nonlinear
and have learned weights

Although challenging to interpret fully,
Fourier transforms can be used to gain
insights into the properties of these filters

The pre-transfer gain of the filter in the
frequency domain highlights the important
frequencies utilized by a single-layer network

A similar analysis suggests sophisticated
phase relationships

Analysis of test Classification
Accuracy (CA) reveals that:

A single-layer Time-Delay Neural
Network (TDNN) outperforms
PSDs with LDA

Multilayer CNNs outperform
TDNNs only when transfer learning
is leveraged

Note that a random classifier would
be expected to achieve 25% CA

CNNs with fully connected
readout layers perform only slightly
better than random

Analysis of information transfer rates in Bits Per Minutes (BPM) show that CNNs
hold the largest advantage over PSDs when decisions are made rapidly

Supports our claim that CNNs are well suited for applications that require
smooth, continuous control

LDA CNN-LA Pret.

Test Classification Accuracies
Participant LDA TDNN CNN-LA CNN-LA Pret.
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1 85.00 80.00 80.00 85.00
2 55.00 60.00 70.00 55.00
3 40.00 75.00 60.00 80.00
4 55.00 55.00 60.00 65.00
5 70.00 85.00 80.00 90.00
6 40.00 30.00 40.00 30.00
7 65.00 75.00 70.00 75.00
8 45.00 55.00 40.00 60.00
9 50.00 50.00 45.00 55.00

10 25.00 25.00 25.00 25.00

Mean 53.00 59.00 57.00 62.00

Im
p

ai
rm

en
t 11 25.00 45.00 45.00 50.00

12 80.00 80.00 90.00 90.00
13 25.00 25.00 25.00 30.00
14 30.00 25.00 30.00 20.00

Mean 40.00 43.75 47.50 47.50

A
ll Mean 49.29 54.64 54.29 57.86

Further insights into the patterns learned by our networks may be found by
  -fixing the network weights and class label
  -using optimization to learn an optimal input sequence

We use the ALOPEX correlative learning algorithm

Seed the input sequence with a known signal segment from the desired class

Often appears to include subtle increases in high frequency information

Convolutional Networks are a powerful tool for classifying EEG signals recorded
during imagined mental tasks when label aggregation and transfer learning are 
incorporated

Various methods are available for analyzing the patterns learned by these networks

Real-time experiments are a next-step toward developing these types of BCI systems
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