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Non-Invasive Brain-Computer Interfaces

Classification by Forecasting

Controlling BCI with Imagined Mental Tasks

Brain-Computer Interfaces (BCI) are devices that allow
users to control computer systems by voluntarily
altering their mental state.
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Results and Conclusions

Subj ec t 4-Task s (bpm) 2-Task s (bpm)

A
b
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o
d
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d

01 13.54 11.70
02 3.15 8.34
03 8.82 15.93
04 15.34 21.41
05 4.06 1.98
06 13.54 21.41
07 2.34 3.56
08 13.54 21.41
09 7.79 5.66

Mean 9.12 ± 3.90 12.38 ± 6.11

Im
p
ai
re

d

10 0.07 0.00
11 8.82 3.56
12 0.00 0.00
13 9.54 13.69
14 1.65 0.87

Mean 4.02 ± 5.92 3.63 ± 7.22

Subj ec t 4-Task s (%) 2-Task s (%)

A
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d

01 62.50 85.00
02 42.50 80.00
03 55.00 90.00
04 65.00 95.00
05 45.00 65.00
06 62.50 95.00
07 40.00 70.00
08 62.50 95.00
09 53.13 75.00

Mean 54.24 ± 7.43 83.33 ± 8.81

Im
p
ai
re

d

10 27.50 40.00
11 55.00 70.00
12 15.00 50.00
13 56.25 87.50
14 37.50 60.00

Mean 38.25 ± 22.05 61.50 ± 22.77
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Echo State Networks
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Non-Invasive BCI typically use Electroencephalography
(EEG) to monitor brain activity while a machine learning algorithm identifies the user's mental state by
searching for patterns in the EEG signals.

Since BCI bypass the motor-based mechanisms that ordinarily drive human communication, they are of
interest to those afflicted with severe motor impairments such as quadriplegia and locked-in syndrome.

BCI may eventually be used in everyday human-computer interaction.

We propose a method for constructing BCI that uses Echo State Networks to forecast and ultimately
classify spontaneous EEG signals produced during several imagined mental tasks.

In the present work, we are investigating BCI that users control by
performing one of several predetermined mental tasks. 

For example, a user may silently sing a song to move a computer cursor to
the left or silently count backward to move the cursor to the right.

Unlike many other BCI approaches, using imagined mental tasks does not
require external stimuli.

We believe that this approach may eventually allow fluid, continuous control
that is second nature for experienced users.

Data was collected from 14 participants for
offline analysis at a later time.

Nine participants had no known medical
conditions or motor impairments and recording
took place in a laboratory environment.

Five participants had severe motor impairments
and recording took place in their homes in order
to replicate real-world operating conditions.

Each participant performed four imagined mental tasks following a queue on an LCD computer screen:
1. Silently sing a song, 2. Imagine making a fist, 3. Visualize a rotating cube, 4. Silently count backward.

The EEG signals have a sampling frequency of 256Hz and were preprocessed using a bandpass filter
from 4-100Hz, a notch filter at 60Hz and a common average reference.

Echo State Networks (ESN) are recurrent artificial neural networks
that are capable of learning complex spatiotemporal patterns.
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ESN have two layers with weighted connections.

The first layer is called the reservoir and consists of hundreds or
thousands of sparsely connected neurons including recurrent feedback
connections.  The reservoir uses a hyperbolic tangent transfer function.

The second layer is called the readout layer and is densely connected
with no recurrent connections and a linear transfer function.

ESN are remarkable in that the reservoir weights and connectivity are chosen randomly.  The only way that the
reservoir is tuned is by scaling the reservoir weights to have a given spectral radius, choosing a connectivity
value and scaling the input weights to fall within a given range.

Our first experiments seek to determine how
well ESN are able to forecast EEG signals.

ESN trained to continually predict the next
value of an EEG signal are able to achieve
errors less than 7% of the signal range.

Next, ESN that are trained to forecast EEG in this way are allowed to operate autonomously, utilizing their
previous predictions as the network inputs.  These signals are often similar to the true EEG signal.

Above, we see an ESN forecasting EEG before the 8s mark.  After 8s, we see an ESN operating autonomously.

The readout layer is trained using linear regression with a ridge regression penalty.

Next, we desire to classify EEG segments
so that a BCI can identify the mental task
a user is performing.

In order to prevent our models from fitting noise in the signal
or learning any trial-specific patterns, we limit, or regularize,
the complexity of our models.

The spectral radius can be viewed as a limit on the length of time
that information resonates in the reservoir while the ridge regression
penalty can prevent the readout layer from being strongly influenced
by only a few neurons in the reservoir.

To the right, we see that there is a sweet-spot for the spectral radius and ridge regression penalty.

These parameters are tuned for each subject using a 6-fold cross validation over the training partition.
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Table 1: Classification Accuracies.

Table 2: Information Transfer Rates.

We now evaluate the performance of our BCI system by applying
these methods to the data recorded from all 14 subjects at the rate
of one decision every 2 seconds.

In Table 1, we see the classification accuracies in percent
correct for each subject.  Note that we would expect a random
classifier to achieve 25% for four tasks and 50% for two tasks.

We examine the full 4-task problem as well as looking at the
performance of our system when only using each subject's two
best-performing tasks.

Future Work

In Table 2, we see the information transfer rates in bits per minute
(bpm) for each subject.

Classification accuracy varies widely between subjects and reaches
a peak of 65% correct for the four tasks and 95% for two tasks.

Although the subjects with motor impairments do not perform as
well as those without motor impairments, the differences are not
statistically significant given our small sample size.

These information transfer rates are competitive with current
state-of-the-art BCI systems.

Although these results are encouraging, BCI users would likely
find them frustratingly low.

Brainwaves Research Lab.

This is achieved by training a separate
ESN to model EEG produced while the
subject performs each mental task. 

Each ESN can then be viewed as an expert at forecasting EEG from each task.

Previously unseen EEG is labeled by applying each ESN and selecting the label associated with the model that
produced the lowest forecasting error.

An instruction to the computer that is associated with the class label can then be executed.

Interactive and real-time experiments are required in order to fully evaluate these methods.

Filtering and preprocessing techniques may improve performance by attenuating artifacts and noise.

Other forecasting approaches, such as autoregressive models, will be directly compared to ESN.


