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Electroencephalography

Electroencephalography (EEG) is a technique for measuring
brain activity using an array of electrodes placed on the surface
of a subject’s scalp.
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Brain-Computer Interfaces

@ There many uses for EEG, both clinical and research

@ Today, we are interested in Brain-Computer Interfaces
(BCI)

@ BCI establish a direct channel of communication between
brain and machine

@ Bypasses ordinary motor based communication

@ BClI can be used in assistive technology:
@ operate computers, wheelchairs, telephones, et cetra

@ Reestablish communication for those with Locked-in
Syndrome

@ May eventually be used in everyday devices
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EEG classification is difficult

@ Useful and exciting, but not easy

@ Low signal to noise ratio:

@ Microvolt signals
@ Ocular & muscular artifacts
@ Noise from external electronics

@ The brain is complex!

@ Billions of neurons
@ Trillions of connections
@ Recurrent & Stateful

@ EEG is complex and patterns are both spatial
(intra-electrode) and temporal
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Current approaches

@ Current classification rates are not high enough
@ Often rely on power spectrum estimates

@ Do not readily capture some patterns

@ Phase differences
@ Short term ordering of events

@ We propose using Recurrent Neural Networks
@ Here, we investigate Elman Nets in particular
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Elman Networks

@ Elman Networks have two layers

x1(t) x2(t)

@ Hidden layer:
o fully connected to inputs
@ sigmoidal transfer functions
o full recurrent connections

@ Visible layer:
e fully connected to hidden layer
and outputs
o linear transfer function
@ no recurrent connections

@ Long history and, relatively, well
studied [1] yi  ya

@ Universal approximators of Finite

State Machines [2
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Training Elman Networks

@ Gradient Descent using Scaled Conjugate Gradients
(SCQG) [3]

@ Gradient estimated using Truncated, Batch-Mode,
Back-Propagation Through Time (BPTT) [4, 5]
@ Recurrent connections unrolled into feedforward network
@ Unrolling truncated after some timesteps back
@ Gradient accumulated over entire sequence
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EEG Collection

@ Classify EEG during imagined mental tasks
@ Imagined motor task
@ Arithmetic task

@ Simple dataset for now

@ Three subjects
@ Subject-A and Subject-B: Able bodied, mid-twenties, in
laboratory setting
@ Subject-C: Quadriplegia, spinal legion at C4, mid-twenties,
at home

@ 256 samples per second
@ Hardware Analog Bandpass filter: 1.5-34Hz
@ Maximum Noise Fraction Filter [6, 7]

@ Standardize to zero mean unit variance
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Preprocessed EEG
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Forecasting EEG

@ First, we consider forecasting EGG a single step ahead
@ One input per channel
@ One output per channel

@ Minimize MSE between current output and next signal
value
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Parameter Selection

@ Three parameters to tune manually

@ Steps unrolled for BPTT
@ Training epochs
o Hidden units

@ Steps unrolled fixed at 20
@ Training epochs fixed at 250

@ Little improvement with larger values

@ Regularization controlled by limiting hidden units

@ Smaller networks are much faster
@ Early stopping doesn’t work quite as well
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Forecasting EEG

@ Forecasting error vs

hidden units
Validation
. . . Q Trainin,
@ Six-fold cross validation 27 s
@ Separates around 15-20 °
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Classification via Forecasting

@ Generative approach to classification
@ Separate RNN trained to model each class
@ Model by forecasting a single step ahead
@ Each network is an expert on its class
Training Data Training Experts

EEG Class 1 —» SCG+BPTT 1 —3 Forecaster/RNN 1
EEG Class 2 —» SCG+BPTT 2 —>Forecaster/RNN 2

EEG Class K —>» SCG+BPTT K —VForecaster/RNN K
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Classification via Forecasting

@ Novel EEG is labeled by

@ apply each forecaster/expert to new EEG

@ average error over a short window

@ select label associated with model that produced lowest
error

Novel Data Expert Evaluation Error Accumulation Class Label

/1 Forecaster/RNN 1 —» Averaged MSE 1

Lowest MSE
EEG > Forecaster/RNN 2 —» Averaged MSE 2 —3p 0"

(Label 2)

(Say Class 2)\ :
Forecaster/RNN K—» Averaged MSE K

@ Similar to Gupta, Oeda and Coyle [8, 9, 10]
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Classification of EEG

@ Classification accuracy vs
hidden units

@ Decisions made every
second

@ Six-fold cross validation

Average Percent Correct

@ Over-fit after 10-20 hidden
units

50 55 60 65 70 75 80 85 90 95 100
I

Trammg
Vahda\won

100 120 140 160

Hidden Units

Elliott Forney & Charles Anderson IJCNN  19/23



Hidden Unit Contradiction

@ We have a paradox:

@ Best modeling error with ~ 50 hidden units
@ Richest iterated dynamics with > 150 hidden units
@ Highest classification accuracy with ~ 10 — 20 hidden units

@ Conjecture:

@ Simple, short-term patterns seem more discriminative
@ Complex, long-term patterns seem to contribute to
forecasting error but are not discriminative
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Classification Accuracy

| NH | Training  Validation  Test

Subject-A | 18 | 96.7% 86.7%  80.0%
Subject-B | 10 | 100.0%  85.0%  57.9%
Subject-C | 16 | 99.3% 90.0%  94.6%

Table: Average Classification Accuracy

@ Subject-A performs well

@ Subject-B performs poorly on test partition, possibly lost
concentration?

@ Subject-C performs very well

@ Recall that Subject-C is disabled and data was recorded at
home

Elliott Forney & Charles Anderson IJCNN  21/23



| NH | Training Validation Test
Subject-A | 18 | 47.3bpm 26.0bpm  16.7bpm
Subject-B | 10 | 60.0bpm 23.4bpm  1.1bpm
Subject-C | 16 | 56.5bpm 31.9bpm 41.8bpm

Table: Average Bitrate

@ decisions are made at one second intervals

@ bitrates are more comparable, fair and describe user
experience better [11, 12]

@ state-of-the-art is somewhere around 10-40bpm
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