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Electroencephalography

Electroencephalography (EEG) is a technique for measuring

brain activity using an array of electrodes placed on the surface

of a subject’s scalp.
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Brain-Computer Interfaces

There many uses for EEG, both clinical and research

Today, we are interested in Brain-Computer Interfaces

(BCI)

BCI establish a direct channel of communication between

brain and machine

Bypasses ordinary motor based communication

BCI can be used in assistive technology:

operate computers, wheelchairs, telephones, et cetra

Reestablish communication for those with Locked-in

Syndrome

May eventually be used in everyday devices
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EEG classification is difficult

Useful and exciting, but not easy

Low signal to noise ratio:

Microvolt signals

Ocular & muscular artifacts

Noise from external electronics

The brain is complex!

Billions of neurons

Trillions of connections

Recurrent & Stateful

EEG is complex and patterns are both spatial

(intra-electrode) and temporal
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Current approaches

Current classification rates are not high enough

Often rely on power spectrum estimates

Do not readily capture some patterns

Phase differences

Short term ordering of events

We propose using Recurrent Neural Networks

Here, we investigate Elman Nets in particular
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Elman Networks

Elman Networks have two layers

Hidden layer:

fully connected to inputs

sigmoidal transfer functions

full recurrent connections

Visible layer:

fully connected to hidden layer

and outputs

linear transfer function

no recurrent connections

Long history and, relatively, well

studied [1]

Universal approximators of Finite

State Machines [2]
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Training Elman Networks

Gradient Descent using Scaled Conjugate Gradients

(SCG) [3]

Gradient estimated using Truncated, Batch-Mode,
Back-Propagation Through Time (BPTT) [4, 5]

Recurrent connections unrolled into feedforward network

Unrolling truncated after some timesteps back

Gradient accumulated over entire sequence
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EEG Collection

Classify EEG during imagined mental tasks
Imagined motor task

Arithmetic task

Simple dataset for now

Three subjects
Subject-A and Subject-B: Able bodied, mid-twenties, in

laboratory setting

Subject-C: Quadriplegia, spinal legion at C4, mid-twenties,

at home

256 samples per second

Hardware Analog Bandpass filter: 1.5-34Hz

Maximum Noise Fraction Filter [6, 7]

Standardize to zero mean unit variance
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Raw EEG
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Preprocessed EEG
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Forecasting EEG

First, we consider forecasting EGG a single step ahead

One input per channel

One output per channel

Minimize MSE between current output and next signal

value
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Parameter Selection

Three parameters to tune manually

Steps unrolled for BPTT

Training epochs

Hidden units

Steps unrolled fixed at 20

Training epochs fixed at 250

Little improvement with larger values

Regularization controlled by limiting hidden units

Smaller networks are much faster

Early stopping doesn’t work quite as well
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Forecasting EEG

Forecasting error vs

hidden units

Six-fold cross validation

Separates around 15-20

Levels off around 40

Only slight over-fitting
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Iterated Models

Placing feedback loop

between the output and

input

Forms an autonomous,

iterated system

This gives insight into the

temporal information

learned

To the right: 20, 40 and

160 hidden units

1 2 3 4 5

Time (s)

S
ig

n
a

l

EEG

RNN

−3
−1

1
3

1 2 3 4 5

Time (s)

S
ig

n
a

l

EEG

RNN

−3
−1

1
3

1 2 3 4 5

Time (s)

S
ig

n
a

l

EEG

RNN

−3
−1

1
3

Elliott Forney & Charles Anderson IJCNN 15/23



Elliott Forney & Charles Anderson IJCNN 16/23



Classification via Forecasting

Generative approach to classification

Separate RNN trained to model each class

Model by forecasting a single step ahead

Each network is an expert on its class

EEG Class 1

EEG Class K

EEG Class 2

..
.

Forecaster/RNN 1

Forecaster/RNN 2

Forecaster/RNN K

..
.

SCG+BPTT 1

SCG+BPTT 2

SCG+BPTT K

..
.

Training Data Training Experts
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Classification via Forecasting

Novel EEG is labeled by

apply each forecaster/expert to new EEG

average error over a short window

select label associated with model that produced lowest

error

EEG

(Say Class 2)

Forecaster/RNN 1

Forecaster/RNN 2

Forecaster/RNN K

..
.

Averaged MSE 1

Averaged MSE 2

Averaged MSE K

..
.

Lowest MSE

(Label 2)

Expert Evaluation Error Accumulation Class LabelNovel Data

Similar to Gupta, Oeda and Coyle [8, 9, 10]
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Classification of EEG

Classification accuracy vs

hidden units

Decisions made every

second

Six-fold cross validation

Over-fit after 10-20 hidden

units
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Hidden Unit Contradiction

We have a paradox:

Best modeling error with ≈ 50 hidden units

Richest iterated dynamics with > 150 hidden units

Highest classification accuracy with ≈ 10 − 20 hidden units

Conjecture:

Simple, short-term patterns seem more discriminative

Complex, long-term patterns seem to contribute to

forecasting error but are not discriminative
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Classification Accuracy

NH Training Validation Test

Subject-A 18 96.7% 86.7% 80.0%

Subject-B 10 100.0% 85.0% 57.9%

Subject-C 16 99.3% 90.0% 94.6%

Table: Average Classification Accuracy

Subject-A performs well

Subject-B performs poorly on test partition, possibly lost

concentration?

Subject-C performs very well

Recall that Subject-C is disabled and data was recorded at

home
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Bitrates

NH Training Validation Test

Subject-A 18 47.3bpm 26.0bpm 16.7bpm

Subject-B 10 60.0bpm 23.4bpm 1.1bpm

Subject-C 16 56.5bpm 31.9bpm 41.8bpm

Table: Average Bitrate

decisions are made at one second intervals

bitrates are more comparable, fair and describe user

experience better [11, 12]

state-of-the-art is somewhere around 10-40bpm
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Thanks!
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