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Future Work

Brain-Computer Interfaces (BCI) are systems for establishing a direct channel of
communication between the human brain and a computerized device.

BCI utilize a communication protocol along with signal processing and machine
learning algorithms to convey the user's intent to a computer system.

In our lab, we use Electroencephalography
(EEG) to monitor brain activity because it is
non-invasive, portable and relatively affordable.

An important application for BCI is in the
development of assistive technologies for
people with severe motor impairments.

For those who find it difficult to  communicate
or perform everyday tasks, even a somewhat
slow BCI may prove to be an invaluable tool.

Convolutional Networks for EEG Signal Classification in
Non-Invasive Brain-Computer Interfaces

Convolutional Networks

Synchronous Paradigms

Regularization

Receptive Fields and FIR Filters

Asynchronous Paradigms

Current BCI typically follow one of two paradigms.

Synchronous paradigms rely on the brain's response to
a time-locked stimulus, known as an Event-Related
Potential (ERP).

For example, the P300 speller type of BCI flashes the
rows and columns of a virtual keyboard.  The BCI then
attempts to identify the letter that the user is attending
to by analyzing the ERPs in the user's EEG signals
following each stimulus presentation.

In order to detect the desired ERP, a number
of trials are typically segmented by the
stimulus onset and then averaged together.

Averaging smooths noise, artifacts, and
trial-to-trial variations.

However, averaging may also remove useful
information.

Asynchronous BCI paradigms are self-paced
and typically do not require external stimuli.

For example, in a motor imagery paradigm, a user
might imagine moving their left arm to move a
mouse cursor left or imagine moving their right
arm to move the cursor to the right.

Amplitude changes in the sensory-motor regions
of the brain can then be used to identify which
imagined movement the user is performing.

Since these changes are not time-locked,
an appropriate model must be shift-invariant.
Typically, this is handled by viewing the
power spectrum of the signal.

These frequency changes are known as
Event-Related (De)Synchronization (ERD/S).

The current trend in machine learning is to move away from hand-crafted models and feature
selection procedures in favor of algorithms that are capable of learning hierarchical representations.

These "deep networks" rely on minimal, if any, prior assumptions about the structure of the patterns
in the data.  In this case, the EEG signals.

Avoiding prior assumptions about the data may allow a machine learning algorithm to exploit patterns
that are not currently known or well-understood by human researchers

Analysis of deep networks may also lead to new insights into the types of patterns that are useful for
discriminating between different EEG signals.

Deep Learning

Convolutional Networks (CN) are a 
type of deep network that are able to learn
hierarchical representations while maintaining
a level of invariance to shift and deformation.

CNs consist of a number of layers that each
perform a number of convolutions with the
previous layer.  A non-linear transfer function is then
applied (we use the hyperbolic tangent) and the result
is decimated before it is passed to the next layer.

The output of the convolutional layers is then passed to
a fully connected network.  This network contains a single non-linear layer followed by a linear
layer with softmax readouts that indicate the probability that the signal belongs to each class.

The weights at each layer are learned using backpropigation, we use Scaled Conjugate Gradients.

Since the weights in each convolutional layer essentially "scan" the decimated output of the
previous layer, these weights are considered to be shared.

This results in fewer parameters to be optimized than would be found in a similar network that
is fully-connected.

This also allows the network to identify features, or events, that occur in the signal, regardless of
the time at which they occurred, i.e., the network can learn shift-invariant features.

CN are becoming increasingly popular and have been shown to be very effective for some problems.

The weights of the kernel of each convolution are often interpreted as the receptive field of an
artificial neuron, a concept similar to structure often found in biological neural networks.

From this viewpoint, CN are designed to form a hierarchy of highly-specialized neurons with
potentially overlapping receptive fields.

An alternate interpretation of the one-dimensional convolutional network is a series of non-linear
Finite Impulse-Response (FIR) decimation filters.

From this viewpoint, each convolutional layer can be thought of as a filter-bank that processes the
signal or selects features that are useful for classification.

          LDA             KNN             FN              CN
Subject    BCA  ( AUC )    BCA  ( AUC )    BCA  ( AUC )    BCA  ( AUC )
-----------------------------------------------------------------------
    08   70.73 (61.46)   68.23 (65.62)   65.54 (56.88)   67.92 (64.79)
    10   77.67 (68.33)   71.42 (52.50)   80.00 (63.33)   71.83 (62.50)
    11   89.58 (79.17)   91.67 (78.33)   88.67 (75.00)   93.33 (81.67)
    12   64.50 (57.50)   45.00 (48.33)   64.08 (53.33)   58.83 (61.67)
    13   73.17 (66.67)   60.25 (60.00)   76.50 (65.00)   84.25 (77.50)
    15   80.75 (73.33)   64.42 (59.17)   75.50 (65.00)   88.33 (77.50)
    16   90.92 (81.67)   55.17 (53.33)   91.17 (77.50)   80.83 (72.50)
    20   80.67 (72.50)   64.92 (52.50)   77.50 (65.83)   86.25 (75.83)
    21   85.17 (80.83)   78.50 (69.17)   87.50 (75.83)   86.50 (80.83)
    22   89.42 (85.83)   86.67 (73.33)   86.00 (87.50)   90.75 (80.00)
    23   78.25 (65.83)   78.42 (74.17)   83.50 (70.83)   91.42 (73.33)
    24   92.50 (74.17)   78.83 (66.67)   91.17 (77.50)   88.50 (77.50)
    25   71.58 (65.00)   68.00 (55.83)   73.42 (73.33)   76.25 (67.50)
    26   83.83 (80.00)   60.58 (61.67)   80.33 (76.67)   88.17 (77.50)
    27   93.58 (90.83)   87.58 (66.67)   94.33 (85.83)   95.33 (84.17)
    28   71.08 (60.83)   65.58 (65.00)   71.92 (65.00)   70.08 (66.67)
-----------------------------------------------------------------------
  Mean   80.84 (72.75)   70.33 (62.64)   80.32 (70.90)   82.41 (73.84)

We have recently run several preliminary experiments that have yielded 
mixed but encouraging results.

In offline experiments using a synchronous P300-style task, CNs
outperform regularized Linear Discriminant Analysis, K-Nearest Neighbors,
and a traditional Feed-forward Network by about 3% Balanced Classification
Accuracy or 2% Area Under the ROC Curve (AUC). This is a small but
notable improvement for initial experiments.

For asynchronous Mental-Task BCI, our training performance is currently
near 100% test performance near 50% for four tasks.  This suggests that
overfitting is a significant challenge that must be overcome in order for this
type of BCI to work effectively with the small amount of data that can
reasonably be collected during an interactive calibration phase.

In order to prevent our CNs from
fitting noise or unrelated patterns in
our relatively small EEG datasets,
we seek to limit the complexity of
our models, i.e., our CNs are
regularized.

Currently, this is performed using an
L2-norm weight decay with the same
parameter at each layer.

Although this approach is effective, it is somewhat difficult to achieve models
with moderate complexity.  Further investigation into other regularization
approaches appears to be necessary.

Improved methods for hyper-parameter selection (number and size of layers)
and regularization appear to be the most important next step:

A random or meta search may allow for the weight decay to be adjusted at
each layer.  Introducing noise into the input layer or using "dropout"
techniques are alternative regularization techniques that should be considered.

Variations in the networks architecture are also interesting avenues to explore.
For instance, replacing the convolution operations with recurrent networks
may yield models with fewer parameters and better generalization.

Of course, the final goal of this work is to produce usable BCI that perform
well.  Future works should focus on producing CNs that are fast enough to be
used in interactive BCI and that are robust to the challenges found in
real-world use cases.

∑ ∑

0.8 0.2

Original Signal

Convolution
Transfer

Decimation

Feature Signals 1

Feature Signals 2

Fully Connected Layer

Class Probabilities

Linear Softmax Layer

Convolution
Transfer

Decimation

0 100 200 300 400 500 600 700
Time (ms)

40

20

0

20

40

60

S
ig

n
a
l 
(µ
V
)

Single Trial
Mean

10 20 30 40 50 60 70
Frequency (Hz)

10-2

10-1

100

101

102

P
o

w
e

r 
D

e
n

si
ty

 (
µ

V
2

/H
z)

F3

F4

C3

C4

P3

P4

O1

O2

0 10-1 100 101 102

L2-Norm Penalty (λ)

50

60

70

80

90

100

P
e
rc

e
n
t 

B
a
la

n
ce

d
 C

la
ss

if
ic

a
ti

o
n
 A

cc
u
ra

cy
 (

B
C

A
)

Validation Training
Validation Testing
Expected Random


