Fast Feedforward Neural Networks with CUDA and OpenMP+SSE

Elliott Forney
May, 2010

Brief Neural Network Review

Status
Micro-benchmarks
Macro-benchmarks
Conclusions
Future Improvements
Neural Network Review

- Neural networks are trainable function approximators

- Neural networks “learn” to map inputs x to outputs y by adjusting connection strengths between units h and v

- Two layer network is a universal function approximator, with potentially infinite number of hidden units

- If we collect our samples into a matrix then each training pass combines the errors from each sample: batch training

- Here, weights are updated using “Steepest” Gradient Descent
Neural Network Review

\(n \): number of training samples
\(m \): number of network inputs
\(p \): number of hidden units
\(q \): number of network outputs
\(X \): input matrix \(m \times n \)
\(Y \): output matrix \(q \times n \)
\(T \): target matrix \(q \times n \)
\(H \): hidden weight matrix \(p \times m \)
\(V \): visible weight matrix \(q \times p \)
\(l \): learning rate parameter
\(\epsilon \): desired accuracy
\(*\): component-wise multiplication
\(\text{tanh} \): component-wise hyperbolic tangent
\(M^T \): transpose of \(M \)
\(M^+ \): add a row of 1’s to \(M \)
\(M^- \): remove last column of \(M \)

Forward pass:
\[Y = V(\text{tanh}(H X^+)^+) \]

Squared Error:
\[E = (Y - T)^2 \]

Gradient for visible layer:
\[\nabla_V E = \nabla_Y E \cdot \nabla_V Y = 2(Y - T)(\text{tanh}(H X^+)^+)^T \]

Gradient for hidden layer:
\[\nabla_H E = \nabla_Y E \cdot \nabla_H Y = (((V^-)^T 2(Y - T)) \ast (1 - \text{tanh}^2(H X^+)))(X^+)^T \]

Update rules:
\[V_{t+1} \leftarrow V_t + \nabla_V E \cdot l \]
\[H_{t+1} \leftarrow H_t + \nabla_H E \cdot l \]

Terminate when:
\[\frac{\sum_{i=0}^{q} \sum_{j=0}^{n} E_{i,j}}{n \times q} < \epsilon \]
Neural Network Review

- Run time of both forward and backward pass are dominated by matrix multiplication: $O(qpn + pmn)$

- Weight update is asymptotically squished: $O(pm + qp)$

- In practice, q is approximately m and $n \gg m$ and p

- Complexity grows linearly as number of samples increases alone

- While improving all operations will help for “smaller” problems, matrix multiply dominates asymptotically, i.e. for arbitrarily large problem sizes
Status

➤ It works!

➤ Both CPU and GPU implementations

➤ No comparison with optimized 3rd party versions... makes it a bit of a “straw man”

➤ Tested with XOR and noisy sinewave

➤ On these problems, precision doesn’t “appear” to be an issue
Status

- My Implementation consists of a number of small kernels:

 - Matrix multiply – ATLAS & CUDA

 - Matrix transpose – SSE+OMP & CUDA

 - Matrix-scalar multiply – SSE+OMP & CUDA

 - Pointwise multiply, add, subtract – SSE+OMP & CUDA

 - Multiply-Hyperbolic tangent – ATLAS + OPM & CUDA

 - Apply derivative of hyperbolic tangent – SSE+OMP & CUDA

 - Add/remove bias weights – Leave extra padding on CPU & GPU

 - Summation / reduction – not done, just run for fixed iterations
Micro-benchmarks

- CUDA matrix multiply beats CUBLAS for most matrix sizes
- However, zero padding makes life difficult.
- For CPU, ATLAS is hard to beat so we just use that... for now
Micro-benchmarks

- Two paradigms for pointwise operations in CUDA
- For small matrices, treat as vector and assign one thread per component
- For large matrices, use 2d grid and virtualize down columns
Micro-benchmarks

```c
// addition kernel for small matrices
__global__ void add_small_kern(float *a, float *b, float *c, unsigned n)
{
  // unique id for each thread 0, ..., (nthreads-1)
  const unsigned id = threadIdx.x + blockIdx.x * blockDim.x;

  // if inside matrix
  if (id < n)
    // sum one value
    a[id] = b[id] + c[id];
}

// addition kernel for big matrices
__global__ void add_big_kern(float *a, float *b, float *c, unsigned n, unsigned stride)
{
  unsigned i;

  // unique id for each block, strided according to stripe size
  const unsigned block_index = blockIdx.x + blockIdx.y * gridDim.x * add_bigStripe;

  // unique id for each thread
  const unsigned id = threadIdx.x + block_index * blockDim.x;

  // each thread sums down a column stripe times
  #pragma unroll
  for (i = id; i < id+add_big Stripe*stride; i += stride)
    if (i < n)  // if inside matrix
      a[i] = b[i] + c[i];  // sum value
}
Micro-benchmarks

- Two paradigms for pointwise operations on CPU as well
- OpenMP hurts for small matrices and helps for mid-sized ones
- Overhead of thread launch vs multi-core & cache
Micro-benchmarks

```c
// addition kernel for small matrices
void add_small(float *a, float *b, float *c, unsigned n)
{
 // pointer to last destination
 const float *a_end = a+n;

 // loop through each value in destination
 while (a < a_end)
 {
 // four values from b and c into sse registers
 __m128 mm_v1 = _mm_load_ps(b);
 __m128 mm_v2 = _mm_load_ps(c);

 // add our sse vectors
 mm_v1 = _mm_add_ps(mm_v1, mm_v2);

 // store result into a
 _mm_store_ps(a, mm_v1);

 // increment pointers by 4
 a += 4; b += 4; c += 4;
 }
}

// addition kernel for big matrices
void add_big(float *a, float *b, float *c, unsigned n)
{
 unsigned i;

 // loop through a, b and c by 4 in parallel
 #pragma omp parallel for
 for (i = 0; i < n; i += 4)
 {
 // load four values into sse registers
 __m128 mm_v1 = _mm_load_ps(b+i);
 __m128 mm_v2 = _mm_load_ps(c+i);

 // add our sse vectors
 mm_v1 = _mm_add_ps(mm_v1, mm_v2);

 // store result into a
 _mm_store_ps(a+i, mm_v1);
 }
}
```
**Micro-benchmarks**

- CPU Transpose below, tradeoff similar to addition
- CUDA transpose follows principals from NVIDIA paper
- 75 Gbytes, roughly 5 Gbytes improvement by tweaking tile size
Micro-benchmarks

```c
// transpose kernel a = b^T
__global__ void trans_kern(float *a, float *b, unsigned nrow,
 unsigned astride, unsigned bstride)
{
 unsigned i, blockIdx_x, blockIdx_y;

 if (nrow == astride) { // this block borrow from CUDA SDK
 blockIdx_y = blockIdx.x; // Thanks!
 blockIdx_x = (blockIdx.x+blockIdx.y)%gridDim.x;
 } else {
 const unsigned bid = blockIdx.x + gridDim.x*blockIdx.y;
 blockIdx_y = bid%gridDim.y;
 blockIdx_x = ((bid/gridDim.y)+blockIdx_y)%gridDim.x;
 }

 const unsigned tile_r_stride = trans_tile_r * trans_stride;
 const unsigned tid_y_stride = threadIdx.y * trans_stride;

 const unsigned block_row = blockIdx_y * tile_r_stride;
 const unsigned block_col = blockIdx_x * tile_c;

 unsigned row = block_col + tid_y_stride;
 unsigned col = block_row + threadIdx.x;
 unsigned base = row*bstride + col;

 __shared__ float tile[trans_tile_c][tile_r_stride+1];

 #pragma unroll
 for (i = 0; i < trans_stride; ++i)
 tile[threadIdx.x][tid_y_stride+i] = b[base+i*bstride];

 __syncthreads();

 row = block_row + tid_y_stride;
 col = block_col + threadIdx.x;
 base = row*astride + col;

 #pragma unroll
 for (i = 0; i < trans_stride; ++i)
 a[base+i*astride] = tile[tid_y_stride+i][threadIdx.x];
}
```
#pragma omp parallel for private(c)
for (r = 0; r < a.r; r += 4)
    for (c = 0; c < a.c; c += 4)
    {
        // load 4x4 tile
        float *base = bdata + c*bstride+r;
        __m128 mm_v1 = _mm_load_ps(base);
        __m128 mm_v2 = _mm_load_ps(base + bstride);
        __m128 mm_v3 = _mm_load_ps(base + 2*bstride);
        __m128 mm_v4 = _mm_load_ps(base + 3*bstride);

        // transpose 4x4 tile
        _MM_TRANSPOSE4_PS(mm_v1, mm_v2, mm_v3, mm_v4);

        // store 4x4 tile back into a
        base = adata + r*astride+c;
        _mm_store_ps(base, mm_v1);
        _mm_store_ps(base + astride, mm_v2);
        _mm_store_ps(base + 2*astride, mm_v3);
        _mm_store_ps(base + 3*astride, mm_v4);
    }
Macro-benchmarks

- Use random inputs and targets
- Let \( n_i = n_o = n_h = n_s \) and vary \( 1 \ 3 \ 7 \ 15 \ 31 \ 63 \ 127 \ 255 \ 511 \ 1023 \ 2047 \ 4095 \)
- CPU version gets up to 90 GflopS, GPU version 375 GflopS, 4x speedup
Macro-benchmarks

- Same image as previous but zoomed in on small problems
- CPU version beats GPU for problems smaller than about 40
- Smaller padding, not enough thread blocks, transfer overhead
Random Neural Network Performance
HP 2600 E3520 Tesla c1060
n=10000

GPU vs CPU

Number of Samples (ns)

n=10000
n=10000
n=4095
Conclusions

- For large problems, CUDA can provide up to a 4x speedup.
- For smaller problems, CPU version still beats CUDA, even for some long non-square matrices, i.e. many samples or hidden units with few inputs & outputs.
- Working in CUDA is “relatively” straightforward but in some ways can be more cumbersome than SSE & OMP.
- SSE and OpenMP are fairly easy and can provide nice speedups, especially but not exclusively on compute bound tasks.
Future Improvements

- Test performance on more real-world problems!
- Better weight updates, SCG, Rprop, Alopex
- Fused multiply-transpose & transpose-multiply
- Reduction to compute sum error measures
- Parallel random number generation for weight initialization
- Autotuning small/big kernel boundaries
- More microbenchmarks
- Clean up code and interface
- Better error checking and handling
Yay, summertime!