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Challenges in P300 Classification

P300 Event-Related Potentials
(ERPs) are waveforms that appear in
time-locked Electroencephalography
(EEG) signals following rare-but-
expected stimuli.

This principal can be leveraged to
construct Brain-Computer Interfaces
(BCIs) by associating a number of
stimuli with various instructions.

The stimuli are presented in a
random order while the user attends to the desired stimuli.  The BCI then attempts to
identify the user's intent by classifying the signal as P300 (Target) or non-P300 (Foil).

For example, the P300-Speller type of BCI highlights the rows and columns of a
virtual keyboard while the user attends to the letter they wish to type.

P300-based approaches can be very robust and useful for some people.  However,
current approaches typically require many repeated stimulus presentations.

Improvements in signal processing and machine learning methods may lead to
increased communication rates and less user-fatigue by increasing the accuracy of
P300 detection and reducing the number of stimulus presentations required.
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Future Work

Results

P300 ERPs contain
sophisticated patterns that
are both spatial (across the
scalp) and temporal (over
the course of time).

These patterns contain
large amounts of noise and
artifacts and can vary
considerably across trials
and participants.

A P300 trial also typically exists in a 2,000 - 30,000 dimensional space (sample rate x
no. channels), yet only a few hundred trials can be recorded during a reasonable
calibration session.

In other words, P300 classification is challenging due to noise, variability,
under-sampling and high-dimensionality.

Motivation for using Deep Networks
The current trend in machine learning is to move away from preprocessing, manual tuning
and feature selection in favor of models that are able to automatically learn hierarchical,
multi-scale representations.

These approaches typically involve multi-layer "deep" networks that rely on few prior
assumptions about the data.

Avoiding prior assumptions may allow the model to exploit patterns that have not yet been
identified or are not currently well-understood.

In addition to improved performance, analysis of deep networks may lead to new insights
into the types and structure of patterns found in P300 ERPs.

Current approaches for
classifying P300 ERPs
typically concatenate the
EEG channels across time.

This feature vector is then
passed to any number of
classification algorithms
to assign a probability that
the ERP is a target or foil.

Problems with noise, under-sampling and high-dimensionality are usually handled
through aggressive dimensionality reduction (typically decimation) in combination
with various techniques for model regularization.

Linear classifiers, such as regularized Linear Discriminant Analysis (LDA), have been
particularly successful.  This may, in part, be due to the fact that linear models are
generally less susceptible to the types of problems encountered in P300 classification.

Convolutional
Networks (CNs) are
deep networks that are
able to learn hierarchical
representations while maintaining
a level of invariance to shift and
deformation.

CNs are popular in computer vision and are
considered state-of-the-art for many image
classification problems.

Our variant of the CN is similar to a standard CN
except that it is applied only along the axis of time,
instead of the horizontal and vertical axes of an image.

Each layer of a CN consists of a number of computational units that perform a weighted
convolution with the output of the previous layer followed by a hyperbolic tangent transfer
function and downsampling.

The output of the final convolutional layer is passed to a fully connected network with a
non-linear layer followed by softmax readouts that indicate class membership probabilities.

Model weights are optimized using backpropagation, we use Scaled Conjugate Gradients.

Since the weights in each convolutional layer are applied to a sliding window over the
output of the previous layer, these weights are considered to be shared.  This results in
fewer parameters to optimize relative to a fully-connected network.

This also allows the network to identify features, or events, that occur in the signal,
regardless of the time at which they occurred, i.e., time-invariance.

Insights into the CN Architecture
Convolutional units have been
compared to the receptive fields
observed in biological neurons.

From this viewpoint, CN are
designed to form a hierarchy of
highly-specialized neurons with
overlapping receptive fields.

An alternate interpretation views
each convolutional layer as a bank
of multi-variate, non-linear, finite impulse-response decimation filters.

From this viewpoint, each convolutional layer is viewed as a bank of filters that process the
signal in a way that is useful for classification by the fully-connected layers.

We tested our CN implementation on EEG data recorded during a serial oddball task.

Nine participants had no disabilities and recording took place in our EEG laboratory.
Seven participants had severe motor impairments or progressive neurodegenerative
diseases and recording took place in their homes.  60 target and 180 foil trials were
recorded for each participant.

EEG data were recorded using a 32-channel Biosemi ActiveTwo amplifier.  Eight
channels, CZ, FZ, OZ, P3, P4, P7, P8, PZ, were used in all classification experiments.

All parameters were selected using a 10-fold cross-validation over the first 2/3 of the
data and test performance was evaluated over the final 1/3.

We performed single-trial classification using a two-layer CN with 10 hidden units in
each layer, a window width of 10 and a fully-connected layer with 10 hidden units.

Our CN was compared
to LDA with shrinkage
and a fully-connected 
Neural Network (NN)
with 30 hidden units
and early stopping.

The mean Area Under
the ROC Curve (AUC)
is 4.4% higher for CN
than for LDA.

The mean Balanced
Classification Accuracy
was 3.7% higher for
CN than for LDA.

Mean AUC and BCA for the NN were less than one percent higher than LDA.

Interpretation and Analysis

           LDA            NN             CN        
Subject    AUC ( BCA )    AUC ( BCA )    AUC ( BCA )
----------------------------------------------------

1 79.42 (68.33) 80.17 (70.00) 89.33 (81.67)
     2   85.00 (80.83)  83.17 (71.67)  87.17 (79.17)
     3   88.83 (85.83)  88.17 (80.83)  88.58 (83.33)
     4   81.33 (70.83)  83.17 (72.50)  93.00 (81.67)
     5   90.50 (77.50)  90.33 (78.33)  91.33 (80.83)
     6   71.75 (65.83)  72.92 (67.50)  78.00 (67.50)
     7   80.67 (76.67)  82.42 (80.83)  80.50 (79.17)
     8   93.17 (83.33)  95.25 (86.67)  91.75 (79.17)
     9   71.08 (63.33)  69.92 (65.83)  79.08 (70.83)
----------------------------------------------------
    10   68.36 (59.38)  65.49 (58.33)  65.49 (63.54)
    11   79.75 (71.67)  80.33 (70.00)  81.25 (65.00)
    12   88.25 (80.83)  85.92 (77.50)  92.58 (83.33)
    13   60.50 (52.50)  55.83 (53.33)  58.75 (57.50)
    14   70.25 (64.17)  76.42 (65.83)  82.33 (70.00)
    15   70.00 (63.33)  76.83 (69.17)  87.67 (79.17)
    16   86.50 (80.00)  85.83 (80.00)  88.58 (81.67)
----------------------------------------------------
  Mean   79.08 (71.52)  79.51 (71.77)  83.46 (75.22)
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Fully exploring the hyper-parameters of CNs and incorporating various forms of
regularization may further improve performance.

Interpretation and analysis remains challenging.  Future experiments involve learning
optimal inputs as well as time and frequency-domain analyses of the layer outputs.

Testing CNs in real-time implementations will ultimately determine their usefulness.

In order to interpret the patterns learned by CN, we analyzed the weights and outputs
of a second experiment using 32 channels and
three convolutional layers with one unit each.

The outputs at each layer for a CN with three
layers and a single hidden unit are shown to
the right.  The outputs appear to closely track
the N200 while diverging
slightly at the P300.

In the second and
third layers, the
outputs diverge
considerably 
near the center.

Displaying the first
layer weights on the scalp by channel reveals
insights into the patterns that the CN uses to discriminate between target and foil.
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