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Forecasting EEG
Results and Conclusions
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01 13.54 11.70
02 3.15 8.34
03 8.82 15.93
04 15.34 21.41
05 4.06 1.98
06 13.54 21.41
07 2.34 3.56
08 13.54 21.41
09 7.79 5.66

Mea n 9.12 ± 3.90 12.38 ± 6.11
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10 0.07 0.00
11 8.82 3.56
12 0.00 0.00
13 9.54 13.69
14 1.65 0.87

Mea n 4.02 ± 5.92 3.63 ± 7.22
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01 62.50 85.00
02 42.50 80.00
03 55.00 90.00
04 65.00 95.00
05 45.00 65.00
06 62.50 95.00
07 40.00 70.00
08 62.50 95.00
09 53.13 75.00

Mea n 54.24 ± 7.43 83.33 ± 8.81
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10 27.50 40.00
11 55.00 70.00
12 15.00 50.00
13 56.25 87.50
14 37.50 60.00

Mea n 38.25 ± 22.05 61.50 ± 22.77
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Echo State Networks

Participants and Data Collection
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Methods that rely on Fourier or
Wavelet Transforms have
problems with non-stationarity
and capturing spatial patterns
and phase synchronization. 

Methods that rely on Time-Delay
Embedding suffer from problems
with high-dimensionality.

We believe that these problems
may be overcome by using Artificial Recurrent Neural Networks to capture the dynamics
of EEG signals and, ultimately, perform classification for use in BCI.

Data was collected from 14 participants for offline analysis at a later time.

Nine participants had no known medical conditions or motor impairments and recording
took place in a laboratory environment.

Five participants had severe motor
impairments and recording took place
in their homes in order to replicate
real-world operating conditions.

Each participant performed four mental tasks
following a queue on an LCD computer screen.

The EEG signals have a sampling
frequency of 256Hz and were
preprocessed using a bandpass
filter from 4-100Hz, a notch filter
at 60Hz and a common average
reference.

Echo State Networks (ESN) are recurrent neural
networks that are fast and often good at modeling
complex dynamical systems and time-series.
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ESN have two layers with weighted connections.

The first layer is called the reservoir and consists
of hundreds or thousands of sparsely connected
neurons including recurrent feedback connections. 
The reservoir uses a tanh transfer function.

The second layer is called the readout layer and is
densely connected with no recurrent connections.
The readout layer uses a linear transfer function.

ESN are remarkable in that the reservoir weights and connectivity are chosen randomly.  The only
way that the reservoir is tuned is by scaling the reservoir weights to have a given spectral radius,
choosing a connectivity probability and scaling the input weights to fall within a given range.

Our first experiments seek to
determine how well ESN are
able to forecast EEG signals.

ESN trained to continually
predict the next value of an
EEG signal are able to
achieve errors less than 7%
of the signal range.

Next, ESN that are trained to
forecast EEG in this way are
allowed to run autonomously,
also called an iterated model, using their previous predictions as the network inputs.

Above top, we see an ESN forecasting EEG before 8s and an iterated model after 8s.

The readout layer is trained using linear regression with a Tikhonov regularization penalty.

We desire to
classify EEG
segments so that a
BCI can identify
the mental task
a user is
performing.

In order to prevent our models from
fitting noise in the signal or learning
trial-specific patterns, we limit the
complexity of our models.

The spectral radius can be viewed as a
limit on the length of time that
information resonates in the reservoir.

Above, we see that there is interplay between these parameters and an optimal combination.

Grant Number 1065513.

Table 1: Classification Accuracies.

Table 2: Information Transfer Rates.

We now evaluate the performance of our BCI
on the data recorded from all 14 subjects at
the rate of one decision every 2 seconds.

In Table 1, we present the classification
accuracies in percent correct.  Note that we
would expect a random classifier to achieve
25% for four tasks and 50% for two tasks.

We examine the full 4-task problem as well
as a 2-task problem using the tasks that
performed best during cross-validation.

Future Work

In Table 2, we present the information
transfer rates in bits per minute (bpm).

However, performance varies widely
between subjects with some failing to
achieve any information transfer.

These information transfer rates appear
competitive with other BCI systems.

Although these results are encouraging,
BCI users would likely find them
frustratingly low.  Better performance is
still required for a practical system.

Brainwaves Research Lab.

This is achieved by training a separate ESN to model EEG produced while the subject performs each
mental task. 

Each ESN can then be viewed as an expert at forecasting EEG from each task.

Previously unseen EEG is labeled by applying each ESN and selecting the label associated with the
model that produced the lowest forecasting error.

For performance and consistency, a single reservoir is used with multiple readout layers.

Interactive and real-time experiments are required in order to fully evaluate these methods.

Filtering, preprocessing artifact rejection may improve performance.

Other forecasting approaches should be explored and directly compared to ESN.
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Above bottom, we see a spectrogram of the iterated model generated using a continuous wavelet
transform.  ESN with 1000's of hidden units and a high spectral radius generate iterated models that
appear similar to true EEG.  Simpler networks tend to dampen or oscillate at a single frequency.

The Mental Task (MT) BCI communication paradigm
may provide fluid, asynchronous control for BCI users.

For example, a user might silently sing a song to
move a computer cursor to the left or silently
count backward to move the cursor to the right.

The MT approach does not require external stimuli
and may yield more diverse EEG patterns emanating
from more distinct cortical sources than Motor
Imagery alone.

Capturing Patterns in Spontaneous EEG

However, current approaches for representing EEG patterns and classifying MT do not yet
deliver high adequate performance for use in practical, robust BCI.

These networks can be non-linear and have memory and state, allowing them to capture
complex spatiotemporal patterns. 

Impairments were caused by one of: 
high-level spinal cord injury, multiple
sclerosis, or cerebral palsy.

EEG was recorded using the portable
8-channel g.tec g.MOBILab+ with
g.GAMMASys active electrodes at
sites F3, F4, C3, C4, P3, P4, O1, O2
with an earlobe reference.

The Tikhonov regression penalty can
prevent the readout layer from being
strongly influenced by only a few
neurons in the reservoir.

These hyper-parameters are subject-specific and are found using a 6-fold cross validation
over the first 60% of the EEG data.  Final classification results are found using the
remaining 40% test partition.

A t-test shows significantly higher 
classification accuracy in the laboratory
(p2-task = 0.017, p4-task = 0.047).

Silently sing a favorite song.
Imagine making a left-handed fist.
Visualize a computer screen tumbling in 3D.
Silently count backward from 100 by 3's.

Song:
Fist:
Cube:
Count:


