Fast Feedforward Neural Networks with CUDA and OpenMP+SSE

Elliott Forney May, 2010

Brief Neural Network Review Status Micro-benchmarks Macro-benchmarks Conclusions Future Improvements

Neural Network Review

Neural networks are trainable function approximators

Neural networks "learn" to map inputs x to outputs y by adjusting connection strengths between units h and v

>Two layer network is a universal function approximator, with potentially infinite number of hidden units

>If we collect our samples into a matrix then each training pass combines the errors from each sample: batch training

>Here, weights are updated using "Steepest" Gradient Descent

Neural Network Review

- n : number of training samples
- m : number of network inputs
- p : number of hidden units
- *q* : number of network outputs
- X : input matrix $m \times n$
- Y: output matrix q x n
- T : target matrix q x n
- H: hidden weight matrix $p \times m$
- V : visible weight matrix q x p
- *l* : learning rate parameter
- ϵ : desired accuracy
- *: component-wise multiplication
- *tanh* : component-wise hyperbolic tangent
- M^T : transpose of M
- M^+ : add a row of 1's to M
- M^- : remove last column of M

Forward pass:

 $Y = V(tanh(HX^+)^+)$

Squared Error:

 $E = (Y - T)^2$

Gradient for visible layer:

$$\nabla_V E = \nabla_Y E \cdot \nabla_V Y = 2(Y - T)(tanh(HX^+)^+)^T$$

Gradient for hidden layer:

 $\nabla_H E = \nabla_Y E \cdot \nabla_H Y = (((V^-)^T 2(Y - T)) * (\underline{1} - tanh^2(HX^+)))(X^+)^T$

Update rules:

$$\begin{split} V_{t+1} &\leftarrow V_t + \nabla_V E \cdot l \\ H_{t+1} &\leftarrow H_t + \nabla_H E \cdot l \end{split}$$

Terminate when:

$$\frac{\sum_{i=0}^{q} \sum_{j=0}^{n} E_{i,j}}{n * q} < \epsilon$$

Neural Network Review

Run time of both forward and backward pass are dominated by matrix multiplication: O(qpn + pmn)

- >Weight update is asymptotically squished: O(pm + qp)
- >In practice, q is approximately m and n >> m and p
- Complexity grows linearly as number of samples increases alone
- >While improving all operations will help for "smaller" problems, matrix multiply dominates asymptotically, i.e. for arbitrarily large problem sizes

>It works!

Both CPU and GPU implementations

No comparison with optimized 3rd party versions... makes it a bit of a "straw man"

>Tested with XOR and noisy sinewave

On these problems,precision doesn't"appear" to be an issue

Status

RMSE: 0.000020 RMSE: 0.000019 RMSE: 0.000019 RMSE: 0.000018 RMSE: 0.000018 RMSE: 0.000017 RMSE: 0.000017 RMSE: 0.000016 RMSE: 0.000016 RMSE: 0.000015 RMSE: 0.000015 RMSE: 0.000014 RMSE: 0.000014 RMSE: 0.000013 RMSE: 0.000013 RMSE: 0.000013 RMSE: 0.000012 RMSE: 0.000012 RMSE: 0.000011 RMSE: 0.000011 RMSE: 0.000011 RMSE: 0.000010 RMSE: 0.000010 RMSE: 0.000010 RMSE: 0.000010 RMSE: 0.000009 RMSE: 0.000009 RMSE: 0.000009 RMSE: 0.000009 RMSE: 0.000008 RMSE: 0.000008 RMSE: 0.000008 RMSE: 0.000007 RMSE: 0.000007 RMSE: 0.000007 inputs: 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 1.000000 1.000000 1.000000 1.000000 0.000000 1.000000 0.000000 1.000000 1.000000 0.000000 0.000000 0.000000 1.000000 1.000000 targets: 0.010000 0.010000 0.010000 0.990000 0.010000 0.010000 0.990000 0.990000 0.010000 0.010000outputs: 0.010004 0.010005 0.010004 0.989987 0.010005 0.010004 0.989992 0.989992 0.010005 0.010005 platte:~/courses/cs675/badger\$

Status

>My Implementation consists of a number of small kernels:

- Matrix multiply ATLAS & CUDA
- Matrix-scalar multiply SSE+OMP & CUDA
- Pointwise multiply, add, subtract SSE+OMP & CUDA
- •Multiply-Hyperbolic tangent ATLAS + OPM & CUDA
- •Apply derivative of hyperbolic tangent SSE+OMP & CUDA
- Add/remove bias weights Leave extra padding on CPU & GPU
- *Summation / reduction not done, just run for fixed iterations

>CUDA matrix multiply beats CUBLAS for most matrix sizes

>However, zero padding makes life difficult.

>For CPU, ATLAS is hard to beat so we just use that... for now

>Two paradigms for pointwise operations in CUDA

>For small matrices, treat as vector and assign one thread per component

>For large matrices, use 2d grid and virtualize down columns


```
// addition kernel for small matrices
 global void add small kern(float *a, float *b, float *c, unsigned n)
 // unique id for each thread 0, ..., (nthreads-1)
 const unsigned id = threadIdx.x + blockIdx.x * blockDim.x;
 // if inside matrix
 if (id < n)
   // sum one value
   a[id] = b[id] + c[id];
// addition kernel for big matrices
 global void add big kern(float *a, float *b, float *c, unsigned n, unsigned stride)
 unsigned i;
 // unique id for each block, strided according to stripe size
 const unsigned block index = blockIdx.x + blockIdx.y * gridDim.x * add big stripe;
 // unique id for each thread
 const unsigned id = threadIdx.x + block index * blockDim.x;
 // each thread sums down a column stripe times
 #pragma unroll
 for (i = id; i < id+add big stripe*stride; i += stride)</pre>
   if (i < n) // if inside matrix</pre>
      a[i] = b[i] + c[i]; // sum value
```

>Two paradigms for pointwise operations on CPU as well

>OpenMP hurts for small matrices and helps for mid-sized ones

>Overhead of thread launch vs multi-core & cache


```
// addition kernel for small matrices
void add_small(float *a, float *b, float *c, unsigned n)
{
    // pointer to last destination
    const float *a_end = a+n;
    // loop through each value in destination
    while (a < a_end)
    {
        // four values from b and c into sse registers
        _m128 mm_v1 = _mm_load_ps(b);
        _m128 mm_v2 = _mm_load_ps(c);
        // add our sse vectors
        mm_v1 = _mm_add_ps(mm_v1, mm_v2);
        // store result into a
        _mm_store_ps(a, mm_v1);
        // increment pointers by 4
```

```
a += 4; b += 4; c += 4;
```

```
// addition kernel for big matrices
void add_big(float *a, float *b, float *c, unsigned n)
{
    unsigned i;
```

```
// loop through a, b and c by 4 in parallel
#pragma omp parallel for
for (i = 0; i < n; i += 4)
{</pre>
```

```
// load four values into sse registers
__m128 mm_v1 = _mm_load_ps(b+i);
__m128 mm_v2 = _mm_load_ps(c+i);
```

```
// add our sse vectors
mm_v1 = _mm_add_ps(mm_v1, mm_v2);
```

```
// store result into a
_mm_store_ps(a+i, mm_v1);
```

CPU Transpose below, tradeoff similar to addition

CUDA transpose follows follows principals from NVIDIA paper

>75 GbyteS, roughly 5 GbyteS improvement by tweaking tile size


```
Micro-benchmarks
// transpose kernel a = b^T
global void trans kern(float *a, float *b, unsigned nrow,
                         unsigned astride, unsigned bstride)
 unsigned i, blockIdx x, blockIdx y;
 if (nrow == astride) { // this block borrow from CUDA SDK
   blockIdx y = blockIdx.x; // Thanks!
   blockIdx x = (blockIdx.x+blockIdx.y)%gridDim.x;
 } else {
   const unsigned bid = blockIdx.x + gridDim.x*blockIdx.y;
   blockIdx y = bid%gridDim.y;
   blockIdx x = ((bid/gridDim.y)+blockIdx y)%gridDim.x;
 }
 const unsigned tile r stripe = trans tile r * trans stripe;
 const unsigned tid y stripe = threadIdx.y * trans stripe;
 const unsigned block row = blockIdx y * tile r stripe;
 const unsigned block col = blockIdx x * trans tile c;
 unsigned row = block col + tid y stripe;
 unsigned col = block row + threadIdx.x;
 unsigned base = row*bstride + col;
 shared float tile[trans tile c][tile r stripe+1];
 #pragma unroll
 for (i = 0; i < trans stripe; ++i)
   tile[threadIdx.x][tid y stripe+i] = b[base+i*bstride];
 syncthreads();
 row = block row + tid y stripe;
 col = block col + threadIdx.x;
 base = row*astride + col;
 #pragma unroll
 for (i = 0; i < trans stripe; ++i)</pre>
   a[base+i*astride] = tile[tid y stripe+i][threadIdx.x];
```

```
#pragma omp parallel for private(c)
for (r = 0; r < a.r; r += 4)
 for (c = 0; c < a, c; c += 4)
  ł
    // load 4x4 tile
   float *base = bdata + c*bstride+r;
     m128 mm v1 = mm load ps(base
                                               );
     m128 mm_v2 = mm_load_ps(base + _ bstride);
     m128 mm v3 = mm load ps(base + 2*bstride);
     m128 mm v4 = mm load ps(base + 3*bstride);
   // transpose 4x4 tile
    MM TRANSPOSE4 PS(mm v1, mm v2, mm v3, mm v4);
   // store 4x4 tile back into a
    base = adata + r*astride+c;
    mm store ps(base,
                                  mm ∨1);
   mm store ps(base + astride, mm v2);
    mm store ps(base + 2*astride, mm v3);
    mm store ps(base + 3*astride, mm v4);
```

>Use random inputs and targets

>Let ni=no=nh=ns and vary 1 3 7 15 31 63 127 255 511 1023 2047 4095

>CPU version gets up to 90 GflopS, GPU version 375 GflopS, 4x speedup

Same image as previous but zoomed in on small problems
 CPU version beats GPU for problems smaller than about 40
 Smaller padding, not enough thread blocks, transfer overhead

Conclusions

>For large problems, CUDA can provide up to a 4x speedup

>For smaller problems, CPU version still beats CUDA, even for some long non-square matrices, i.e. many samples or hidden units with few inputs & outputs

>Working in CUDA is "relatively" straight forward but in some ways can be more cumbersome than SSE & OMP

>SSE and OpenMP are fairly easy and can provide nice speedups, especially but not exclusively on compute bound tasks

Future Improvements

- >Test performance on more real-world problems!
- >Better weight updates, SCG, Rprop, Alopex
- >Fused multiply-transpose & transpose-multiply
- Reduction to compute sum error measures
- Parallel random number generation for weight initialization
- >Autotuning small/big kernel boundaries
- More microbenchmarks
- Clean up code and interface
- Better error checking and handling

Yay, summertime!