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Neural Network Review
Neural networks are trainable function 
approximators

Neural networks “learn” to map inputs x to 
outputs y by adjusting connection strengths 
between units h and v

Two layer network is a universal function 
approximator, with potentially infinite number 
of hidden units

If we collect our samples into a matrix then 
each training pass combines the errors from 
each sample:  batch training

Here, weights are updated using “Steepest” 
Gradient Descent



Neural Network Review



Neural Network Review
Run time of both forward and backward pass are dominated by matrix 
multiplication:  O(qpn + pmn)

Weight update is asymptotically squished:  O(pm + qp)

In practice, q is approximately m and n >> m and p

Complexity grows linearly as number of samples increases alone

While improving all operations will help for “smaller” problems, matrix 
multiply dominates asymptotically, i.e. for arbitrarily large problem sizes



Status
It works!

Both CPU and GPU 
implementations

No comparison with 
optimized 3rd party 
versions... makes it a bit 
of a “straw man”

Tested with XOR and 
noisy sinewave

On these problems, 
precision doesn’t 
“appear” to be an issue



Status
My Implementation consists of a number of small kernels:

✔Matrix multiply – ATLAS & CUDA

✔Matrix transpose – SSE+OMP & CUDA

✔Matrix-scalar multiply – SSE+OMP & CUDA

✔Pointwise multiply, add, subtract – SSE+OMP & CUDA

✔Multiply-Hyperbolic tangent – ATLAS + OPM & CUDA

✔Apply derivative of hyperbolic tangent – SSE+OMP & CUDA

✔Add/remove bias weights – Leave extra padding on CPU & GPU

✗Summation / reduction – not done, just run for fixed iterations



Micro-benchmarks
CUDA matrix multiply beats CUBLAS for most matrix sizes

However, zero padding makes life difficult.

For CPU, ATLAS is hard to beat so we just use that... for now



Micro-benchmarks
Two paradigms for pointwise operations in CUDA

For small matrices, treat as vector and assign one thread per component

For large matrices, use 2d grid and virtualize down columns
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Micro-benchmarks
Two paradigms for pointwise operations on CPU as well

OpenMP hurts for small matrices and helps for mid-sized ones

Overhead of thread launch vs multi-core & cache
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Micro-benchmarks
CPU Transpose below, tradeoff similar to addition

CUDA transpose follows follows principals from NVIDIA paper

75 GbyteS, roughly 5 GbyteS improvement by tweaking tile size
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Macro-benchmarks
Use random inputs and targets

Let ni=no=nh=ns and vary 1 3 7 15 31 63 127 255 511 1023 2047 4095

CPU version gets up to 90 GflopS, GPU version 375 GflopS, 4x speedup



Macro-benchmarks
Same image as previous but zoomed in on small problems

CPU version beats GPU for problems smaller than about 40

Smaller padding, not enough thread blocks, transfer overhead







Conclusions
For large problems, CUDA can provide up to a 4x speedup

For smaller problems, CPU version still beats CUDA, even for some long 
non-square matrices, i.e. many samples or hidden units with few inputs & 
outputs

Working in CUDA is “relatively” straight forward but in some ways can be 
more cumbersome than SSE & OMP

SSE and OpenMP are fairly easy and can provide nice speedups, especially 
but not exclusively on compute bound tasks



Future Improvements
Test performance on more real-world problems!

Better weight updates, SCG, Rprop, Alopex

Fused multiply-transpose & transpose-multiply

Reduction to compute sum error measures

Parallel random number generation for weight initialization

Autotuning small/big kernel boundaries

More microbenchmarks

Clean up code and interface

Better error checking and handling



Yay, summertime!


