
Fast Feedforward Neural Networks
with CUDA and OpenMP+SSE

Elliott Forney

May, 2010

Brief Neural Network Review

Status

Micro-benchmarks

Macro-benchmarks

Conclusions

Future Improvements

Neural Network Review
Neural networks are trainable function
approximators

Neural networks “learn” to map inputs x to
outputs y by adjusting connection strengths
between units h and v

Two layer network is a universal function
approximator, with potentially infinite number
of hidden units

If we collect our samples into a matrix then
each training pass combines the errors from
each sample: batch training

Here, weights are updated using “Steepest”
Gradient Descent

Neural Network Review

Neural Network Review
Run time of both forward and backward pass are dominated by matrix
multiplication: O(qpn + pmn)

Weight update is asymptotically squished: O(pm + qp)

In practice, q is approximately m and n >> m and p

Complexity grows linearly as number of samples increases alone

While improving all operations will help for “smaller” problems, matrix
multiply dominates asymptotically, i.e. for arbitrarily large problem sizes

Status
It works!

Both CPU and GPU
implementations

No comparison with
optimized 3rd party
versions... makes it a bit
of a “straw man”

Tested with XOR and
noisy sinewave

On these problems,
precision doesn’t
“appear” to be an issue

Status
My Implementation consists of a number of small kernels:

✔Matrix multiply – ATLAS & CUDA

✔Matrix transpose – SSE+OMP & CUDA

✔Matrix-scalar multiply – SSE+OMP & CUDA

✔Pointwise multiply, add, subtract – SSE+OMP & CUDA

✔Multiply-Hyperbolic tangent – ATLAS + OPM & CUDA

✔Apply derivative of hyperbolic tangent – SSE+OMP & CUDA

✔Add/remove bias weights – Leave extra padding on CPU & GPU

✗Summation / reduction – not done, just run for fixed iterations

Micro-benchmarks
CUDA matrix multiply beats CUBLAS for most matrix sizes

However, zero padding makes life difficult.

For CPU, ATLAS is hard to beat so we just use that... for now

Micro-benchmarks
Two paradigms for pointwise operations in CUDA

For small matrices, treat as vector and assign one thread per component

For large matrices, use 2d grid and virtualize down columns

Micro-benchmarks

Micro-benchmarks
Two paradigms for pointwise operations on CPU as well

OpenMP hurts for small matrices and helps for mid-sized ones

Overhead of thread launch vs multi-core & cache

Micro-benchmarks

Micro-benchmarks
CPU Transpose below, tradeoff similar to addition

CUDA transpose follows follows principals from NVIDIA paper

75 GbyteS, roughly 5 GbyteS improvement by tweaking tile size

Micro-benchmarks

Micro-benchmarks

Macro-benchmarks
Use random inputs and targets

Let ni=no=nh=ns and vary 1 3 7 15 31 63 127 255 511 1023 2047 4095

CPU version gets up to 90 GflopS, GPU version 375 GflopS, 4x speedup

Macro-benchmarks
Same image as previous but zoomed in on small problems

CPU version beats GPU for problems smaller than about 40

Smaller padding, not enough thread blocks, transfer overhead

Conclusions
For large problems, CUDA can provide up to a 4x speedup

For smaller problems, CPU version still beats CUDA, even for some long
non-square matrices, i.e. many samples or hidden units with few inputs &
outputs

Working in CUDA is “relatively” straight forward but in some ways can be
more cumbersome than SSE & OMP

SSE and OpenMP are fairly easy and can provide nice speedups, especially
but not exclusively on compute bound tasks

Future Improvements
Test performance on more real-world problems!

Better weight updates, SCG, Rprop, Alopex

Fused multiply-transpose & transpose-multiply

Reduction to compute sum error measures

Parallel random number generation for weight initialization

Autotuning small/big kernel boundaries

More microbenchmarks

Clean up code and interface

Better error checking and handling

Yay, summertime!

